Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.more » « less
- 
            The freestanding ferroelectric membranes with super-elasticity show promising applications in flexible electronic devices such as transducers, memories, etc. While there have been recent studies on the effect of mechanical bending on the domain structure evolutions and phase transitions in ferroelectric membranes, its influence on Young's modulus of these freestanding membranes is less explored, which is crucial for the design and application of flexible electronics. Here, a phase-field model is developed to simulate the tunability of Young's modulus of freestanding Ba1−xSrxTiO3 membranes under mechanical bending. It is demonstrated that the bended membrane shows a uniform Young's modulus compared with unbended membrane. By increasing the bending angle, Young's modulus tunability is enhanced, which can be attributed to the vortex-like domain structures induced by the mechanical bending. These vortex-like domains with large domain wall energy inhibit the subsequent domain switching under externally applied tensile strain and reduce the eigenstrain variation, which leads to a large Young's modulus. In addition, the formation of vortex domain structure is suppressed with increasing Sr2+ content in Ba1−xSrxTiO3 membranes at the same bending degree, resulting in a decrease in Young's modulus tunability. Our work reveals that the tunability of Young's modulus of freestanding ferroelectric membranes can be achieved by mechanical bending, which provides guidance for designing flexible electronic devices.more » « less
- 
            Abstract We developed a physical model to fundamentally understand the conductive filament (CF) formation and growth behavior in the switching layer during electroforming process in the metal-oxide-based resistive random-access memories (RRAM). The effects of the electrode and oxide layer properties on the CF morphology evolution, current-voltage characteristic, local temperature, and electrical potential distribution have been systematically explored. It is found that choosing active electrodes with lower oxygen vacancy formation energy and oxides with small Lorenz number (ratio of thermal and electrical conductivity) enables CF formation at a smaller electroforming voltage and creates a CF with more homogeneous morphology. This work advances our understanding of the kinetic behaviors of the CF formation and growth during the electroforming process and could potentially guide the oxide and electrode materials selection to realize a more stable and functional RRAM.more » « less
- 
            Abstract All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding of the complex mechano‐electro‐chemical behavior of Li metal in the ASLMBs. Herein, operando neutron imaging and X‐ray computed tomography (XCT) are leveraged to nondestructively visualize Li behaviors within ASLMBs. This approach offers real‐time observations of Li evolutions, both pre‐ and post‐ occurrence of a “soft short”. The coordination of 2D neutron radiography and 3D neutron tomography enables charting of the terrain of Li metal deformation operando. Concurrently, XCT offers a 3D insight into the internal structure of the battery following a “soft short”. Despite the manifestation of a “soft short”, the persistence of Faradaic processes is observed. To study the elusive “soft short” , phase field modeling is coupled with electrochemistry and solid mechanics theory. The research unravels how external pressure curbs dendrite growth, potentially leading to dendrite fractures and thus uncovering the origins of both “soft” and “hard” shorts in ASLMBs. Furthermore, by harnessing finite element modeling, it dive deeper into the mechanical deformation and the fluidity of Li metal.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
